Working of 555 Timer (Unit IV)

Prof Suneeta S. Raykar,

Associate Professor E&E GEC

Suneeta@gec.ac.in

Configuration of 555 as a astable multivibrator

555 IC Timer Block Diagram

Astable Multivibrator using 555 Timer

Working of 555 as astable

Connections Capacitor and Output Voltage Waveforms Astable Operation

555 as monostable multivibrator

555 IC Timer Block Diagram

Derivation

- The time during which the capacitor C charges from $1/3 V_{cc}$ to $2/3 V_{cc}$ is equal to the time the output is high and is given as $t_c \text{ or } T_{HIGH} = 0.693 (R_A + R_B) C$, which is proved below.
- Voltage across the capacitor at any instant during charging period is given as,
- $v_c = V_{CC}(1 e^{t/RC})$
- The time taken by the capacitor to charge from 0 to +1/3 $\rm V_{\rm CC}$

= t/RC 1/3 VCC VCC (1-e)

The time taken by the capacitor to charge from 0 to +2/3 V_{cc}

• or t₂ = RC log_e 3 = 1.0986 RC

So the time taken by the capacitor to charge from +1/3 V_{cc} to +2/3 V_{cc}

• $t_c = (t_2 - t_1) = (1.0986 - 0.405) RC = 0.693 RC$

Substituting $R = (R_A + R_B)$ in above equation we have

- $T_{HIGH} = t_c = 0.693 (R_A + R_B) C$
- where R_A and R_B are in ohms and C is in farads.

Derivation

- The time during which the capacitor discharges from +2/3 $V_{\rm CC}$ to +1/3 $V_{\rm CC}$ is equal to
- the time the output is low and is given as
- t_d or T_{LOW} = 0.693 R_B C where R_B is in ohms and C is in farads The above equation is worked out as follows: Voltage across the capacitor at any instant during discharging period is given as
- $v_c = 2/3 V_{CC} e^- t_{d/} R_B C$
- Substituting $v_c = 1/3 V_{CC}$ and $t = t_d$ in above equation we have
- +1/3 V_{CC} = +2/3 $V_{CC} e^{-} t_{d/} R_{B}C$
- Or t_d = 0.693 R_BC

Final equation

- Overall period of oscillations, T = T_{HIGH} + T_{LOW} = 0.693 (R_A + 2R_B) C, The frequency of oscillations being the reciprocal of the overall period of oscillations T is given as
- $f = 1/T = 1.44/(R_A + 2R_B)C$
- Equation indicates that the frequency of oscillation / is independent of the collector supply voltage +V $_{\rm CC}$.
- Often the term duty cycle is used in conjunction with the astable multivibrator.
- The duty cycle, the ratio of the time t_c during which the output is high to the total time period T is given as
- % duty cycle, D = $t_c / T * 100 = (R_A + R_B) / (R_A + 2R_B) * 100$

Square wave generator using 555 astable

- From the above equation it is obvious that square wave (50 % duty cycle) output can not be obtained unless R_A is made zero. However, there is a danger in shorting resistance R_A to zero. With $R_A = 0$ ohm, terminal 7 is directly connected to + V_{CC} . During the discharging of capacitor through R_B and transistor, an extra current will be supplied to the transistor from V_{CC} through a short between pin 7 and + V_{CC} . It may damage the transistor and hence the timer.
- The capacitor C charges through R_A and diode D to approximately + $2/3V_{CC}$ and discharges through resistor R_B and terminal 7 (transistor) until the capacitor voltage drops to $1/3 V_{CC}$.
- Then the cycle is repeated. To obtain a square wave output, R_A must be a combination of a fixed resistor R and a pot, so that the pot can be adjusted to give the exact square wave.

Practical working (Blinking LED)

Design a astable for frequency of 5 KHz and 75% duty cycle.

G prequency = SRhz T = 1 = 0.2 ms Ton 0.2 ms = Ton + Toff Ton = 75% ×0.2 ms = 0.75 × 0 2 = 0.15 MS Total Time Tog = 0.25 ×0.2 but tall = $0.693 \times Rb \times C$ assume C = 0.141 $0.05 = 0.693 \times Rb \times 0.1210^{-6}$ 0.05 × 10-3 = Rb 721-5 R.12 = Rb.

Ton = 0.693 (Ra+ Rp) C

Ra= 1.443 R.S.

THANK YOU